A LARGE SIEVE FOR A CLASS OF NON-ABELIAN L-FUNCTIONS

BY

MORRIS GOLDFELD

ABSTRACT

Let q be a fixed odd prime. We consider the sequence of Kummer fields $Q(\frac{q}{\lambda},\frac{q}{a})$ as a varies. Estimates are given for the global density of zeroes of Artin L-functions of these fields. These results are obtained by deducing a series representation for the Artin L-functions that arises naturally in the arithmetic of Q.

1. Introduction

Owing to the fact that the zeta-functions of abelian extensions of the rational number field factor into a product of L-functions, it is possible to deduce results about their distribution of zeros that would not otherwise be obtained by a direct analysis. In particular, if E is a cyclotomic extension formed by adjoining a primitive $\sqrt[k]{1}$ to the rationals, with corresponding zeta-function $\zeta_E(s)$; the explicit factorization

(1)
$$
\zeta_E(s) = \prod_{\chi \bmod k} L(s, \chi)
$$

was utilized by Siegel [1] to prove essentially that for $z = 1 + it$, the number of zeros of $\zeta_{E}(s)$ in the circle $|s - z| \leq \frac{1}{2} - \varepsilon$ is bounded by $\phi(k) / (\log k)^{\delta}$ where $\delta > 0$ depends on e. Here Siegel used the relation between the geometric and arithmetic means to reduce what appears basically as a multiplicative problem to an additive one. The orthogonality relations among the characters result in an important gain that would not otherwise be obtained, for example, by a direct application of Jensen's formula to $\zeta_{E}(s)$.

In recent years, important generalizations of Siegel's result have been obtained

Received March 9, 1972

by Bombieri [3] and Montgomery [9]. If $N_E(\alpha, T)$, $N_x(\alpha, T)$ denote the number of zeros of $\zeta_E(s)$, $L(s, \chi)$ respectively in the rectangle

$$
\alpha \leq \sigma \leq 1, \quad |t| \leq T
$$

then estimates of the form

(2)
$$
N_E(\alpha, T) = \sum_{\chi \bmod k} N_{\chi}(\alpha, T) \ll T^{c(1-\alpha)} \qquad (T \geq q)
$$

have been given by Fogels [6] and generalized by Gallagher [7] to

(3)
$$
\sum_{k \leq T} \sum_{\chi \bmod k} N_{\chi}(\alpha, T) \ll T^{c(1-\alpha)} \qquad (T \geq 1)
$$

where $*$ means primitive characters.

Factorizations similar to (1) occur in certain non-abelian extensions, although the L-functions can no longer be taken abelian. While it may be possible to discuss such factorizations in a more general context by considerations of intermediate fields, we shall restrict ourselves to meta-cyclic extensions. In this way, all discussion of intermediate fields is avoided, and a characterization is obtained directly through the ground field. In particular, we consider the Kummer field K_a obtained by successively adjoining (for q prime) a primitive $\sqrt[q]{1}$ and a $\sqrt[q]{a}$ for some integer $a \neq \pm 1$ or a perfect qth power. Each such field gives rise to an Artin L-function formed from a character of the representation of the meta-cyclic Galois group. Theorem 1 gives an expression for the Artin L-function directly in terms of the rational number field, and in this way, generalizations of (3) are obtained for this class of L-functions. An additional factor, however, will now depend on the degree of the character.

2. Some general notations

We let K_a be the Kummer field as described above. The nth occurrence of the letter c will denote an absolute constant c_n . For primes p and q, the symbol $\chi_{p,q}$ denotes a Dirichlet character mod p of exact order q. By \ll , we mean Vinogradov's symbolism for "less than a constant times".

3. The Artin L-functions

For a Galois extension K/k with non-abelian group G, a theory of L-functions has been developed by Artin [1] which is analogous to the abelian case. Here, however, representations of G into matrices over the complex numbers are considered, the characters being the traces of these matrices.

If β is a prime in K lying above some prime p in k, then the decomposition group G_{β} of β consists of those automorphisms $\mu \in G$ such that $\mu\beta = \beta$. The Frobenius automorphism $(\beta, K/k) = \mu$ is the unique element $\mu \in G_{\beta}$ characterized by the property

$$
\mu a \equiv a^{Np} (\bmod \beta)
$$

for all integers $a \in K$. Here Np denotes the usual norm.

For every $\mu \in G$, let $M(\mu)$ be a representation of G into matrices over the complex numbers. Let $\chi(\beta)$ be the trace of $M(\beta, K/k)$. Actually, we may write $\chi(p)$ since the value $\chi(\beta)$ is independent of $\beta | p$. The Artin L-function is defined by its logarithm

$$
\log L(s,\chi,K/k)=\sum_{p,m}\frac{\chi(p^m)}{mNp^{m\ast}},
$$

the sum going over primes $p \in k$ and positive rational integers m.

It was shown by Artin [2] that $L(s, \chi, K/k)$ satisfies the following properties:

- (4) $L(s, \chi, K/k)$ is regular for $\sigma > 1$.
- (5) $L(s, \chi_0, K/k) = \zeta_{K/k}(s)$.

(6) If $\chi = \chi_1 + \chi_2$ are characters of G, then

$$
L(s, \chi, K/k) = L(s, \chi_1, K/k) \cdot L(s, \chi_2, K/k).
$$

(7) If Ω is an intermediate field between K and k so that Ω/k is normal, and if χ is a character of Gal (Ω/k) , then

$$
L(s, \chi, K/k) = L(s, \chi, \Omega/k)
$$

where χ can also be regarded as a character of G.

(8) If Ω is an intermediate field between K and k, then to each character χ of Gal(k/ Ω) there corresponds an induced character χ' of G such that

$$
L(s, \chi', K/k) = L(s, \chi, K/\Omega).
$$

It was shown by Brauer [4] that if χ is a character of G, then for rational integers n_{ii} ,

(9)
$$
L(s, \chi, K/k) = \prod_i \prod_j L(s, \chi_{ij}, K/\Omega_i)_{ij}
$$

where each Gal(K/Ω_i) is cyclic and the χ_{ij} are abelian characters of Gal(K/Ω_i). In particular, the Artin *L*-function $L(s, \chi, K/k)$ satisfies a functional equation induced by the functional equation of the abelian L-series in the right side of (9).

4. L-functions of Kummer fields

We consider the Kummer field $K_a = Q(\sqrt[q]{1}, \sqrt[q]{a})$ for q a prime number and $a \neq \pm 1$ or a perfect qth power. The Galois group G of K_a/Q is a metacyclic group which can be written

$$
G = G_1 G_2, \qquad G_1 \bigcap G_2 = \langle 1 \rangle
$$

where G_1 and G_2 are cyclic subgroups having orders q and $q - 1$ respectively. If *n* is the degree of K_a/Q then $n = q(q - 1)$.

The elements of G fall into q conjugacy classes, so there are only q simple characters of G, among which are included the $q - 1$ linear or abelian group characters. If we denote these simple characters $\chi_1, ..., \chi_q$, with $\chi_1, ..., \chi_{q-1}$ linear, then it follows from the orthogonality relations that

(10)
$$
\sum_{i=1}^{q} \chi_{i}(\mu)\bar{\chi}_{i}(\mu') = \begin{cases} n/l_{\mu} & \mu' \in \langle \mu \rangle \\ 0 & \mu' \notin \langle \mu \rangle \end{cases}
$$

where l_u is the order of the conjugacy class $\langle \mu \rangle$ of μ . Taking $\mu = \mu' = 1$ gives

(11)
$$
\sum_{i=1}^{q} n_i^2 = n \qquad (n_i = \text{degree of } \chi_i)
$$

so that we must have $n_q = q - 1$. Also, taking $\mu' = 1$ in (10) gives

(12)
$$
\sum_{i=1}^{q-1} \chi_i(\mu) + (q-1)\chi_q(\mu) = \begin{cases} q(q-1) & \mu = 1 \\ 0 & \text{otherwise} \end{cases}
$$

and therefore, we have the factorization

$$
\zeta_{K_a/Q}(s) = L(S, \chi_0, K_a/K_a) = L\left(S, \sum_{i=1}^{q-1} \chi_i + (q-1)\chi_q, K_a/Q\right)
$$

=
$$
\left[\prod_{i=1}^{q-1} L(S, \chi_i, K_a/Q)\right] \cdot L(S, \chi_q, K_a/Q)^{(q-1)}.
$$

Since the characters $\chi_1, \ldots, \chi_{q-1}$ may be taken as characters of G_2 , it follows from (7) that with $\Omega = Q(\sqrt[q]{1})$

$$
L(S, \chi_i, K/Q) = L(S, \chi_i, \Omega/Q) \qquad (1 \le i \le q-1)
$$

and this is just a Dirichlet series formed with a Dirichlet character $\chi_i \mod q$. Hence, the zeta-function of the Kummer field K_a has the following factorization:

(14)
$$
\zeta_{K_a}(s) = \left[\prod_{\chi \bmod q} L(s, \chi) \right] \cdot L(s, \chi_q, K_a/Q)^{(q-1)}
$$

where χ_q has degree $q - 1$ and χ_q is induced by a character χ of Gal(K/ Ω). So that by (8),

$$
L(s, \chi_a, K_a/Q) = L(s, \chi, K_a/\Omega).
$$

In particular, the Artin *L*-function $L(s, \chi_a, K_a/Q)$ is regular.

The factorization (14) can be reformulated directly in terms of Dirichlet characters of the ground field Q . To establish this, it is necessary first to examine the factorization of rational primes in K . Accounts of such factorizations were originally due to Dedekind and good treatments can be found in $[5, p. 91]$. If p is a rational prime not dividing qa and f_1 and f_2 are minimal such that

$$
p^{f_1} \equiv 1 \pmod{q}, x^q \equiv a^{f_2} \pmod{p}
$$
soluble

then p is unramified and factorizes in K_a as a product of $r = q(q - 1)/f_1 f_2$ prime ideals $\beta_1, ..., \beta_r$ with $N\beta_i = p^{f_1f_2}$.

Looking at the local factor L_p of $\zeta_{K_q}(s)$ corresponding to a rational prime p, we see that

$$
L_p = \prod_{\beta \mid p} \left(1 - \frac{1}{N\beta^s} \right)^{-1} = \left(1 - \frac{1}{p^{f_1 f_2 s}} \right)^{-1}.
$$

Let ξ_1, ξ_2 be primitive f_1, f_2 th roots of unity respectively. Then

$$
L_p = \prod_{h_1=1}^{f_1} \prod_{h_2=1}^{f_2} \left(1 - \frac{\xi_1^{h_1} \xi_2^{h_2}}{p^s}\right)^{-r}.
$$

Now, as γ runs through the Dirichlet characters mod q, $\chi(p)$ takes on each value ξ^{h_1} ($h_1 = 1, ..., f_1$) exactly $(q - 1)/f_1$ times, and as $\chi_{p,q}^{\mathbf{w}}(w = 1, ..., q)$ runs through the Dirichlet characters (mod p) of order q, each value $\xi_2^{h_2}(h_2 = 1, ..., f_2)$ is taken exactly q/f_2 times. Hence, our local factor may be taken as

$$
L_p = \prod_{\chi \bmod q} \prod_{w=1}^q \left(1 - \frac{\chi(p)\chi_{p,q}^w(a)}{p^s}\right)^{-1}.
$$

It follows that $\zeta_{K_n}(s)$ has the factorization

(15)
$$
\zeta_{K_q}(s) = \left[\prod_{\chi \bmod q} L(s, \chi) \right] \left[\prod_{\chi \bmod q} \prod_{w=1}^{q-1} \left(1 - \frac{\chi(p) \chi_{p,q}^w(a)}{p^s} \right)^{-1} \right].
$$

Comparing (14) and (15) gives the following theorem.

44 M. GOLDFELD Israel J. Math.,

THEOREM 1. *The Artin L-function* $L(s, \chi_a, K_a/Q)$ *may be written for* $\text{Re } s > 1$ *as*

(16)
$$
L(s, \chi_q, K_a/Q) = F(s) \left[\prod_{\substack{p \\ p+qa}} \prod_{\chi \bmod q} \prod_{w=1}^{q-1} \left(1 - \frac{\chi(p) \chi^w_{q}(a)}{p^s} \right)^{-1} \right]^{1/(q-1)}
$$

where $F(s)$ consists of some finite product of ramified primes $p \mid qa$.

Unfortunately, it appears as if there is no simple direct way of analytically continuing the series representation (16) to the left of the line $Re(s) = 1$. Any such continuation should shed some light on the structure of a non-abelian extension in terms of the arithmetic of its ground field.

5. Application of the large sieve

Following Gallagher [7], we show that if $L(s, \chi_q, K_q/Q)$ has a zero near $z =$ $1 + i\nu$, then for suitable x, y, the sum

$$
S_{x,y}(a,v) = \sum_{\substack{x \le p \le y \\ p \equiv 1 \pmod{q}}} \sum_{w=1}^{q-1} \frac{\chi_{p,q}^w(a)}{p^z} \log p
$$

is large. In this way, bounds for the number of zeros of the Artin L-functions can be determined directly from large sieve estimates for character sums. We shall prove the following theorem.

THEOREM 2. Let $N_a(\chi_q, \alpha, T)$ denote the number of zeros of $L(s, \chi_q, K_a/Q)$ in *the rectangle* $\alpha \leq \sigma \leq 1, |t| \leq T$. *Then for positive constants* c_1, c_2, c_3, c_4, F

 (17) $\sum' N_a(\gamma_a,\alpha,T) \ll T^{c_1n(1-a)}(c_2,n\mathscr{L})^{g+F}[\Gamma T^{2-c_3n}A+A^{9/10}]$ *a<=A*

where Σ' means $a \neq 1$ or a q'th power, and $g \ll n \frac{\log T}{\log A}$.

Before proving (17), we first establish some lemmas.

LEMMA 1. $L(s, \chi_q, K_q/Q)$ has $\ll rn\mathscr{L}$, $(n = q(q-1))$ zeros in any disc $|s-z| \leq r$ provided $(n\mathcal{L})^{-1} \leq r \leq 1$, $z=1+iv$, $|v| \leq T$ and $\mathcal{L} = \log T$.

PROOF. This follows by a direct application of $\lceil 10, p \rceil$. 331 to the zeta function of an algebraic number field, it being noted that in this case the Artin L-function $L(s, \chi_q, K_q/Q)$ divides $\zeta_{K_q}(s)$.

LEMMA 2. If $L(s, \chi_q, K_q/Q)$ has a zero in the disc $|s-z| \leq r$ with $(n\mathcal{L})^{-1} \leq r \leq c, z = 1 + iv, |v| \leq T$, then for every $x \geq T^{cn}$

$$
\int_{x}^{x^{B}} |s_{x,y}(a,v)| \frac{dy}{y} \geqslant (T^{-cm}) \cdot r^{2},
$$

where B is a suitable constant.

PROOF. Here, we essentially follow Gallagher's argument [7]. The Artin L-function satisfies

(19)
$$
\frac{L'}{L}(s,\chi_q,K_a/Q) = \sum_{\rho}\frac{1}{s-\rho} + O(n\mathscr{L}), |s-z| \leq \frac{1}{2}
$$

where ρ runs over zeros in $|s - z| \leq 1$. The above is obtained most simply in some more general cases owing to the fact that the Artin L-function may divide the zeta-function of the field. An application of Cauchy's inequality to (19) gives

$$
\frac{D^{k}}{k!}\frac{L'}{L}(s,\chi_{q},K_{q}/Q)=(-1)^{k}\sum \frac{1}{(s-\rho)^{k+1}}+O(4^{k}n\mathscr{L}),\ |s-z|\leq \frac{1}{4}.
$$

The above sum contains $\ll 2^j$ nL terms that are each $\ll (2^j\lambda)^{-(k+1)}$ for $2^{j}\lambda < |\rho - z| \leq 2^{j+1}\lambda$, and their contribution is

$$
\ll \sum_{j\geq 0} (2^j \lambda)^{-k} n \mathscr{L} \ll \lambda^{-k} n \mathscr{L}.
$$

Consequently, for $(n\mathcal{L})^{-1} \leq r \leq \lambda \leq \frac{1}{4}$,

(20)
$$
\frac{D^k}{k!} \frac{L'}{L} (z + r, \chi_q, K_a/Q) = (-1)^k \sum_{r} \frac{1}{(z + r - \rho)^{k+1}} + O(\lambda^{-k} n \mathcal{L})
$$

where Σ' now runs over $|\rho - z| \leq \lambda$. By Lemma 1, there are $\ll \lambda n \mathscr{L}$ such zeros ρ and min $|z - \rho| \leq 2r$. So by Turan's second power theorem [12]

$$
\left|\sum'\frac{1}{(z+r-\rho)^{k+1}}\right| \ge (Dr)^{-(k+1)}
$$

for suitable constant D and for some integer $k \in [K, 2K]$ provided $K \gg \lambda n \mathscr{L}$. Hence, by choosing $\lambda = cr$, we get

(21)
$$
\frac{D^{k}}{k!} \frac{L'}{L} (z + r, \chi_{q}, K_{q}/Q) \geq (Dr)^{-(k+1)}
$$

Making use of the Dirichlet expansion (16), the above may be rewritten as

$$
\frac{1}{q-1} \sum_{\chi \bmod q} \sum_{w=1}^{q-1} \sum_{m} \frac{\chi(m)\chi_{m,q}^{w}(a)}{m^z} \Lambda(m) P_k(r \cdot \log m)
$$

$$
= \sum_{m \equiv 1(q)} \sum_{w=1}^{q-1} \frac{\chi_{m,q}^{w}}{m^z} \Lambda(m) P_k(r \cdot \log m) \gg D^{-k}/r
$$

where

$$
P_k(u) = e^{-u}(u^k/k!)
$$

and satisfies

$$
P_k(u) \leq (2D)^{-k} \text{ for } u \leq B_1k
$$

$$
P_k(u) \leq (2D)^{-k}e^{-\frac{1}{2}u} \text{ for } u \geq B_2k
$$

for some constants B_1 and B_2 .

Let x be $\geq T^{cn}$, with $c = B_1 E$. Put $K = B_1^{-1} r \log x$ so that $K \geq \text{Ern } \mathscr{L}$, k [K, 2K]. It follows for $B = 2B_2/B_1$ that

$$
\sum_{\substack{m \le x \\ m \equiv 1 \, (q)}} \sum_{w=1}^{q-1} \frac{\chi_{m,q}(a)}{m^z} \Lambda(m) P_k(r \cdot \log m)
$$

\$\le (2D)^{-k}(q-1) \sum_{\substack{m \le x \\ m \equiv 1 \, (q)}} \frac{\Lambda(m)}{m}
\$\le (2D)^{-k}k/r\$

and also

$$
\sum_{\substack{m \geq x \\ m \equiv 1(q)}} \sum_{w=1}^{q-1} \frac{\chi_{m,q}(a)}{m} \Lambda(m) P_k(r \cdot \log m)
$$

\$\leq (2D)^{-k}(q-1) \sum_{\substack{m \geq x \\ m \equiv 1(q)}} \frac{\Lambda(m)}{m^{1+\frac{1}{2}r}}\$

Therefore

$$
\sum_{\substack{x < m < x \\ m \equiv 1 (q)}} \sum_{w=1}^{q-1} \frac{\chi_{m,q}(a)}{m} \Lambda(m) P_k(r \cdot \log m) \geq D^{-k}/r.
$$

Since $P_k \ll 1$, the prime powers in (22) contribute $\ll x^{\frac{1}{2}}$ which may be ignored. Now, for $s(y) = s_{x,y}(a, r)$, we may write

$$
\int_{x}^{xB} p_k(r \cdot \log y) ds(y) = p_k(r \cdot \log x^B) s(x^B)
$$

$$
- \int_{x}^{xB} s(y) P'_k(r \cdot \log y) r \frac{dy}{y}.
$$

The first term on the right is

$$
\ll (2D)^{-k}(q-1)\sum_{\substack{m\leq xB\\ m\equiv 1(q)}}\frac{\Lambda(m)}{m}\ll (2D)^{-k}k/r,
$$

and since $p'_{k} = p_{k-1} - p_{k} \ll 1$

$$
\int_x^{x^B} |s(y)| \frac{dy}{y} \geqslant D^{-k}/r^2.
$$

LEMMA 3. Let $y \leq x^c$. Then the following estimate holds:

(23)
$$
\sum_{a \le A} |s_{x,y}(a,0)|^2 \ll A \frac{\log^2 x}{x} + \left[\left(\log \frac{y}{x} \right)^2 - \frac{1}{g} A^{9/10} (\log y)^{g+c} \right]
$$

where $g \leq 4 \frac{\log x}{\log A} + c$.

PROOF. Let S denote the sum in the Lemma. Then since $\chi_{p_1,q}^{w_1} \chi_{p_2,q}^{w_2}$ can be principal only if $p_1 = p_2$, and otherwise is a primitive character $\chi \mod p_1 p_2$ of order q, it follows that

$$
S \ll \frac{A \log^{2} x}{x} + \sum_{\substack{x \leq p_{1} \cdot p_{2} \leq y \\ p_{1} p_{2} \equiv 1(q) \\ p_{1} \neq p_{2}}} \frac{\log p_{1} \log p_{2}}{p_{1} p_{2}} \sum_{x}^{\infty} |S(\chi)|
$$

where Σ'' is over primitive characters χ mod p_1p_2 of order q, and

$$
S(\chi) = \sum_{a \leq A} \chi(a).
$$

Let T denote the double sum on the right. It now follows by Holder's inequality that $T \leq T_1 T_2$

where

$$
T_1 = \left[\sum q \left[\frac{\log p_1 \log p_2}{p_1 p_2} \right]^{2g/(2g-1)} \right]^{1-1/2g}
$$

$$
T_2 = \left[\sum \sum_{\mathbf{x}}^{\infty} S(\mathbf{x})^{2g} \right]^{1/2g}.
$$

Applying the "large sieve" estimate

$$
\sum_{q \leq Q} \sum_{\chi \bmod q}^* \left| \sum_{n \leq N} a_n \chi(n) \right|^2 \ll (Q^2 + N) \sum_{n \leq N} |a_n|^2
$$

as in $[8, p. 226]$ yields

$$
T \ll \left(\log \frac{y}{x}\right)^{(2-1/\theta)} A^{9/10} (\log y)^{\theta+c}
$$

which proves the lemma.

PROOF OF THEOREM. Because $N_a(\chi_a,\alpha,T)=0$ for $|1-\alpha| \ll (n\mathscr{L})^{-1}$, it is

enough to prove (17) for $|1 - \alpha| \geq (n\mathcal{L})^{-1}$. It follows from Lemma 2 that if $L(s, \chi_q, K_q/Q)$ has a zero in $|s-z| \leq |1-\alpha|$ and $x \geq T^{cn}$ then

$$
T^{cn(1-\alpha)}(n\mathscr{L})^{-3}\int_x^{x^B}\Big|S_{x,y}(a,v)\Big|^2\frac{dy}{y}\geq 1.
$$

There are $\ll (1 - \alpha)n\mathscr{L}$ zeros in $|s - z| \leq (1 - \alpha)$ so that

$$
N_a(\chi_q, \alpha, T) \ll T^{cn(1-\alpha)}(n\mathscr{L})^{-2} \int_x^{x^B} \int_{-T}^T |S_{x,y}(a, v)|^2 dv \frac{dy}{y}
$$

and therefore for some $y \in [x, x^B]$

$$
\sum_{a\leq A} N_a(\chi_q,\alpha,T) \ll T^{cn(1-\alpha)}n^{-2}\mathscr{L}^{-1}\sum_{a\leq A} \int_{-T}^T \left|S_{x,y}(a,v)\right|^2 dv.
$$

It follows by Gallagher's first theorem [7, p. 331] that

$$
\sum_{a\leq A} N_a(\chi_q,\alpha,T) \ll T^{cn(1-\alpha)}n^{-2}\mathscr{L}^{-1}T^2I.
$$

where

(24)
$$
I = \int_0^\infty \sum_{a \le A} \left| \sum_{\substack{y \le p \le y e^{-1/T} \\ p \equiv 1(q)}} \sum_{w=1}^{q-1} \frac{\chi_{p,q}^w(a) \log p}{p} \right|^2 \frac{dy}{y}.
$$

We now apply Lemma 3 to the above, and we get

(25)
$$
\int_{0}^{\infty} \sum_{a \le A} \left| \sum_{\substack{y \le p \le y \ e^{-1/T} \\ p \equiv 1(q)}} \sum_{w=1}^{q-1} \frac{\chi_{p,q}^{w}(a) \log p}{p} \right|^{2} \frac{dy}{y}
$$

$$
\ll \frac{A\log^3 x}{x} + (T^{-2+1/g})A^{9/10} (\log x)^{g+c}
$$

The theorem follows from Eqs. (24) and (25).

REFERENCES

1. E. Artin, *Ueber eine neu art yon L-reihen,* Abh. Math. Sem. Univ. Hamburg3 (1923), 89-108.

2. E. Artin, *Zur theorie der L-reihen mit allgemeinen gruppencharakteren,* Abh. Math. Sem. Univ. Hamburg 8 (1930), 292-306.

3. E. Bombieri, *On the large sieve,* Mathemafika 12 (1965), 201-225.

4. R. Brauer, *On Artin's L-series, with general group characters, Ann.* of Math. (2) 48 (1947), 502-514.

5. J. W. Cassels and A. Frohlich, *Algebraic Number Theory,* Proceedings of the Brighton Conference, Academic Press, New York, 1968.

6. E. Fogels, *On the zeros of L-functions,* Acta Arith. 11 (1965), 67-96.

7. P. X. Gallagher, *A large sieve density estimate near* $\sigma = 1$, Invent. Math. 11 (1970), 329-339.

8. M. Goldfeld, *Artin's conjecture on the average,* Mathematika 15 (1968), 223-226.

9. H. L. Montgomery, *Zeros of L-functions,* Invent. Math. 8 (1969), 346-354.

I0. K. Prachar, *Primzahlverteilung,* Springer, 1967.

11. C. L. Siegel, *On the zeros of Dirichlet L-functions,* Ann. of Math. (2) 46 (1945), 409-422.

12. P. Turan, *On some new theorems in the theory of diophantine approximations,* Acta. Math. Acad. Sci. Hungar. 6 (1955), 241-253.

DEPARTMENT OF MATHEMATICS

TEL AVIV UNIVERSITY

TEL Avlv, ISRAEL